

NOTE TECHNIQUE N°9

Evaluation de la fiabilité du dosage de métabolites de chloroacétamides sur eaux naturelles et eaux embouteillées

Ce document est diffusé à titre informatif et est basé sur des résultats et observations d'essais interlaboratoires d'A.G.L.A.E.

Août 2017

Rédacteurs :

Laura Querio Ronan Charpentier Philippe Guarini

Association AGLAE

Parc des Pyramides
427 rue des Bourreliers
59320 Hallennes lez Haubourdin
© 03 20 16 91 40

<u>contact@association-aglae.fr</u> <u>www.association-aglae.fr</u>

RESUME

Dans cette note technique nous proposons de restituer l'évaluation de la fiabilité du dosage de métabolites de chloroacétamides effectuée en 2016. Pour cela, un essai interlaboratoire a été réalisé par AGLAE à la demande de l'Agence Régionale de Santé Aquitaine Limousin Poitou Charentes, qui se préoccupait de la question pour le contrôle sanitaire des eaux. Cet essai a porté sur 6 métabolites de chloroacétamides sur une eau de rivière et de l'eau d'Evian à différents niveaux de concentration. Nous avons observé que les valeurs ciblées par dopage étaient globalement bien retrouvées par les participants. Les valeurs de reproductibilité sont également cohérentes pour le niveau de concentration recherché. Les performances des laboratoires sont dans l'ensemble satisfaisantes.

Cet essai a permis de montrer que le dosage des 6 molécules concernées ne présente pas plus de difficultés que le dosage des pesticides en général et que les laboratoires maîtrisent bien l'ensemble du processus (fiabilité des analyses, estimation de l'incertitude).

ABSTRACT

In this technical note, we report the reliability evaluation of measurement of metabolites of chloroacetamides carried out in 2016. To achieve this, a proficiency test has been carried out by AGLAE upon request of the Heath Regional Agency of Aquitaine Limousin Poitou Charentes which was concerned by the question of sanitary control of water. This proficiency test focused on 6 metabolites of chloroacetamides in river water and Evian water with several concentration levels. We observed that values targeted by spiking were overall well recovered by participants. Reproducibility values were also consistent for the concentration level targeted. Performances of laboratories are overall satisfactory.

This proficiency test enabled us to prove that dosage of these 6 molecules didn't present more difficulties than pesticides dosage in general and that laboratories control the whole process (reliability of analyses, uncertainty estimation).

SOMMAIRE

PRESENTATION ET COMMENTAIRES

1.	INT	RODUCTION	4
2.	PRE	SENTATION DE L'ESSAI	4
3.	EVA	ALUATION DE LA FIABILITE DES RESULTATS	5
	3.1	Détermination des concentrations initiales	5
	3.2	Comparaison des valeurs ciblées par dopage et des valeurs retrouvées par les participants	6
	3.3	Reproductibilité	9
	3.4	Méthodes analytiques mises en œuvre	11
	3.5	Standards utilisés par les participants	12
4.	PER	RFORMANCES DES LABORATOIRES	14
	4.1	Z-score	14
	4.2	Zêta-score	15
5.	COI	NCLUSION	17

1. INTRODUCTION

Dans le cadre du Plan Régional Santé-Environnement 2011-2014, l'Agence Régionale de Santé Aquitaine Limousin Poitou Charentes a commandité et en partie financé un essai interlaboratoire réalisé par AGLAE, ayant pour objectif d'évaluer la fiabilité du dosage de métabolites de chloroacétamides dans le cadre du contrôle sanitaires des eaux. En effet, lors de la première phase de l'action 3RSDE, des résultats positifs avaient été trouvés pour ces molécules. Le but était de s'assurer de la fiabilité des résultats de mesures de ces molécules en écartant de possibles problèmes analytiques.

2. PRESENTATION DE L'ESSAI

L'essai interlaboratoire s'est tenu de février à mars 2016 et a rassemblé 22 laboratoires. Cet essai a porté sur 6 métabolites de chloroacétamides :

- Métolachlore OA (metolachlor oxanilic acid CAS 152019-73-3)
- Métolachlore ESA (metolachlor ethane sulfonic acid CAS 171118-09-5)
- o Alachlore OA (alachlor oxanilic acid CAS 171262-17-2)
- Alachlore ESA (alachlor ethane sulfonic acid CAS 140939-15-7)
- Métazachlore OA (metazachlor oxanilic acid CAS 1231244-60-2)
- Métazachlore ESA (metazachlor ethane sulfonic acid CAS 172960-62-2)

Cinq lots ont été préparés, mettant en jeu différentes matrices et différents niveaux de concentration :

	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5	
	(Flacons A, B)	(Flacons C, D)	(Flacons E, F)	(Flacons G, H)	(Flacons I, J)	
Matrice	Eau de rivière tamisée à 2mm		Eau d'Evian			
Modalité de dopage	Niveau bas	Niveau haut	Pas de dopage	Niveau bas	Niveau haut	
des 6 métabolites	0,1μg/L	0,4μg/L		0,1μg/L	0,4μg/L	

Il était demandé aux laboratoires de réaliser une analyse sur chaque flacon dans des conditions de répétabilité.

Pour toutes les molécules et sur tous les lots, nous avons eu entre 90% et 100% de rendus de résultats. Les résultats sont très majoritairement quantitatifs (supérieur à 90%) pour les niveaux de dopage bas et exclusivement quantitatifs pour les niveaux de dopage haut.

Pour le lot 3 où il n'y avait pas de dopage, tous les résultats étaient de type <LQ.

L'homogénéité des lots préparés a été évaluée à travers l'étude des écarts entre flacons observés par les participants.

Concernant le risque d'instabilité, il avait été donné pour consigne aux laboratoires de mettre en œuvre leurs analyses le plus rapidement possible et en tous cas le jour même de réception des échantillons ; ceci afin de limiter l'effet d'éventuelles instabilités.

Les résultats ont montré que les matériaux présentaient les qualités suffisantes en termes de stabilité et d'homogénéité pour être employés lors d'un essai interlaboratoires.

La valeur assignée au matériau (consensus) et l'écart-type pour l'évaluation de l'aptitude (écart-type utilisé pour le calcul du z-score) ont été estimés à partir des résultats des participants. Ces valeurs ont été calculées de manière robuste avec une version améliorée de l'algorithme A de la norme ISO 13528.

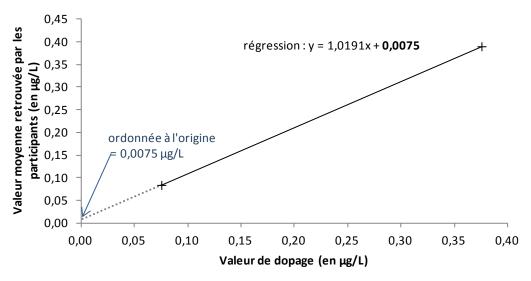
Abréviations

AGLAE: Association générale des laboratoires d'analyse et d'essai

EIL: Essai interlaboratoire

Extraction S/L: Extraction solide/liquide

LC/MS/MS : chromatographie en phase liquide couplée à la spectrométrie de masse en tandem


3. EVALUATION DE LA FIABILITE DES RESULTATS

3.1 Détermination des concentrations initiales

Le dopage de chaque matrice à deux niveaux de concentration a permis d'effectuer la vérification de la concentration initiale de la matrice par une technique de type « ajouts dosés ». Pour cela une régression linéaire a été effectuée entre les valeurs de dopage et les valeurs moyennes retrouvées par les participants. L'ordonnée à l'origine de cette régression nous a permis de calculer la concentration du paramètre avant dopage.

Exemple de l'alachlore ESA sur l'eau de rivière :

Ajouts dosés - alachlore ESA - Eau de rivière

Grâce aux incertitudes estimées sur les valeurs de dopage et les moyennes des participants nous avons défini un intervalle de confiance sur les ordonnées à l'origine qui nous ont permis de vérifier si les concentrations initiales étaient significativement différentes de zéro ou non.

Matrice	Paramètre	borne inférieure de l'intervalle de confiance (k=2)	Concentration initiale recalculée par ajouts dosés (en µg/L)	borne supérieure de l'intervalle de confiance (k=2)	Concentration initiale significativement différente de zéro (au risque d'erreur de 5%)?
	Alachlore ESA	-0,012	0,007	0,026	NON
	Alachlore OA	-0,018	0,010	0,038	NON
Eau de	Métazachlore ESA	0,004	0,019	0,034	OUI
rivière	Métazachlore OA	-0,002	0,015	0,033	NON
	Métolachlore ESA	0,004	0,022	0,040	OUI
	Métolachlore OA	-0,014	0,005	0,023	NON
	Alachlore ESA	-0,010	0,005	0,021	NON
	Alachlore OA	-0,018	0,006	0,030	NON
Eau	Métazachlore ESA	-0,011	0,003	0,016	NON
d'Evian	Métazachlore OA	-0,014	0,002	0,019	NON
	Métolachlore ESA	-0,008	0,006	0,019	NON
	Métolachlore OA	-0,012	0,003	0,018	NON

Il apparaît que seules les concentrations initiales en métazachlore ESA et métolachlore ESA dans l'eau de rivière sont significativement différentes de zéro au risque d'erreur de 5%. Les concentrations initiales calculées par ajouts dosés sont d'ailleurs plus élevées sur l'eau de rivière. Néanmoins, elles restent cohérentes avec celles mesurées par notre laboratoire prestataire d'analyses (<0,05 µg/L). Sur l'eau d'Evian ces calculs ont permis de confirmer l'hypothèse d'absence de ces molécules dans l'eau d'Evian. Nous avons donc considéré que les concentrations initiales sur l'eau d'Evian étaient égales à zéro.

3.2 Comparaison des valeurs ciblées par dopage et des valeurs retrouvées par les participants.

Le tableau ci-après compare la valeur ciblée par dopage avec la valeur moyenne observée par les participants, en tenant compte de l'intervalle de confiance des deux grandeurs (unité en $\mu g/L$).

			Dopage		Résultats des participants		Ecart à	
	Paramètre initial	Concentration initiale dans la matrice	Valeur ciblée par dopage ⁽¹⁾	Incertitude élargie (k=2)	Valeur observée par les participants	Incertitude élargie (k=2)	la cible en %	Valeur ciblée par dopage retrouvée ?
	Alachlore OA* Lot 1	<0,05	0,1004	0,0291	0,1065	0,0198	6,0%	OUI
	Alachlore ESA * Lot 1	<0,05	0,1003	0,0291	0,0842	0,0118	-16,0%	OUI
	Métazachlore OA* Lot 1	<0,05	0,1004	0,0289	0,0753	0,0129	-25,0%	OUI
	Métazachlore ESA* Lot 1	<0,05	0,1009	0,0291	0,0840	0,0102	-16,7%	OUI
ère	Métolachlore OA * Lot 1	<0,05	0,1001	0,0291	0,0762	0,0120	-23,9%	OUI
Ξ	Métolachlore ESA* Lot 1	<0,05	0,1008	0,0291	0,0966	0,0135	-4,2%	OUI
Eau de rivière	Alachlore OA* Lot 2	<0,05	0,4000	0,0325	0,4901	0,0706	22,5%	OUI
Eau	Alachlore ESA * Lot 2	<0,05	0,4004	0,0325	0,3901	0,0512	-2,6%	OUI
	Métazachlore OA* Lot 2	<0,05	0,4026	0,0331	0,3151	0,0398	-21,7%	NON
	Métazachlore ESA* Lot 2	<0,05	0,4003	0,0325	0,3399	0,0332	-15,1%	OUI
	Métolachlore OA * Lot 2	<0,05	0,4003	0,0325	0,3618	0,0493	-9,6%	OUI
	Métolachlore ESA* Lot 2	<0,05	0,4000	0,0325	0,3904	0,0378	-2,4%	OUI
	Alachlore OA* Lot 4	0,000	0,0754	0,0070	0,0996	0,0161	32,1%	NON
	Alachlore ESA * Lot 4	0,000	0,0753	0,0070	0,0799	0,0103	6,0%	OUI
	Métazachlore OA* Lot 4	0,000	0,0754	0,0061	0,0648	0,0105	-14,0%	OUI
	Métazachlore ESA* Lot 4	0,000	0,0759	0,0070	0,0724	0,0079	-4,6%	OUI
an	Métolachlore OA * Lot 4	0,000	0,0751	0,0071	0,0756	0,0074	0,7%	OUI
ĒVi	Métolachlore ESA* Lot 4	0,000	0,0758	0,0070	0,0831	0,0075	9,5%	OUI
Eau d'Evian	Alachlore OA* Lot 5	0,000	0,3750	0,0160	0,4720	0,0627	25,9%	NON
E3	Alachlore ESA * Lot 5	0,000	0,3754	0,0161	0,3771	0,0362	0,4%	OUI
	Métazachlore OA* Lot 5	0,000	0,3776	0,0173	0,3145	0,0485	-16,7%	OUI
	Métazachlore ESA* Lot 5	0,000	0,3753	0,0161	0,3467	0,0325	-7,6%	OUI
	Métolachlore OA * Lot 5	0,000	0,3753	0,0161	0,3658	0,0450	-2,5%	OUI
	Métolachlore ESA* Lot 5	0,000	0,3750	0,0161	0,3888	0,0298	3,7%	OUI

(1) Attention: les valeurs ciblées par dopage sont les teneurs visées lors de la préparation des matériaux; les niveaux de concentration réalisés sont probablement voisins, mais elles ne doivent en aucun cas servir de référence.

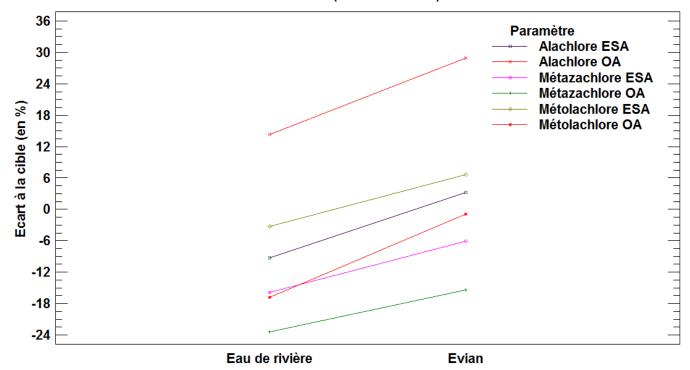
Note : L'incertitude sur la valeur ciblée par dopage a été calculée métrologiquement selon la norme NF ISO/CEI GUIDE 98-3 (Incertitude de mesure - Partie 3 : Guide pour l'expression de l'incertitude de mesure).

A titre indicatif, nous avons calculé pour chaque participant un écart à la cible.

Globalement, les valeurs ciblées par dopage sont bien retrouvées par les participants. Seules 3 valeurs ciblées n'ont pas été retrouvées compte tenu des incertitudes : l'alachlore OA sur eau d'Evian (niveaux bas et haut) et le métazachlore OA sur eau de rivière niveau haut.

En analysant les écarts à la cible en fonction du paramètre, de la matrice et du niveau de concentration à l'aide d'une analyse de variance il apparaît que ceux-ci varient de manière significative en fonction du paramètre et de la matrice. L'effet de la matrice est également variable selon le paramètre (interaction des facteurs matrice/paramètre).

Analyse de variance pour Ecart à la cible


Source	Somme des carrés	Ddl	Carré moyen	F	Probabilité
EFFETS PRINCIPAUX					
A:Matrice	835,058	1	835,058	55,79	0,0007
B:Niveaux	24,5792	1	24,5792	1,64	0,2562
C:Paramètre	3974,89	5	794,977	53,11	0,0002
INTERACTIONS					
AB	249,27	1	249,27	16,65	0,0095
AC	47,3538	5	9,47077	0,63	0,6861
BC	52,8008	5	10,5602	0,71	0,6444
RESIDU	74,8355	5	14,9671		
TOTAL (CORRIGE)	5258,78	23			

Le graphique ci-après représente les écarts à la cible pour chaque molécule sur eau de rivière et sur eau d'Evian. On remarque que pour l'alachlore OA les participants ont tendance à retrouver des valeurs plus élevées que la valeur ciblée par dopage. La molécule la mieux retrouvée est le métolachlore ESA. Les valeurs observées pour le métazachlore OA sont les plus basses par rapport à la valeur ciblée par dopage.

Les valeurs retrouvées par les participants sont plus faibles sur l'eau de rivière que sur l'eau d'Evian. On remarque que cet écart entre l'eau de rivière et l'eau d'Evian est comparable pour le métazachlore OA, le métazachlore ESA, le métolachlore ESA, l'alachlore ESA alors qu'il est plus important pour l'alachlore OA et le métolachlore OA.

ANOVA (Ecarts à la cible)

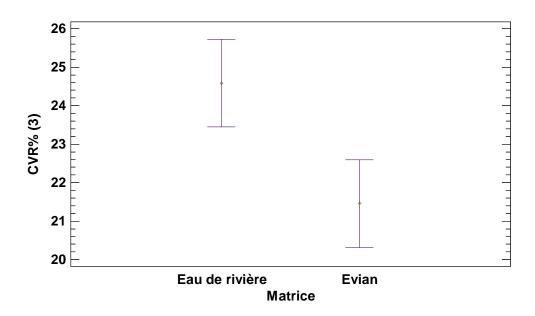
3.3 Reproductibilité

Le tableau ci-dessous liste les valeurs de reproductibilité observées :

Paramètre	m (en μg/L)	CV _R %	Paramètre	m (en μg/L)	CV _R %	
Eau de rivière			Eau d'Evian			
Alachlore ESA * Lot 1	0,0842	24,0	Alachlore ESA * Lot 4	0,0799	22,5	
Alachlore OA* Lot 1	0,1065	33,0	Alachlore OA* Lot 4	0,0996	28,5	
Métazachlore ESA* Lot 1	0,0840	22,0	Métazachlore ESA* Lot 4	0,0724	20,0	
Métazachlore OA* Lot 1	0,0753	31,0	Métazachlore OA* Lot 4	0,0648	29,5	
Métolachlore ESA* Lot 1	0,0966	25,5	Métolachlore ESA* Lot 4	0,0831	16,5	
Métolachlore OA * Lot 1	0,0762	28,5	Métolachlore OA * Lot 4	0,0756	18,5	
Alachlore ESA * Lot 2	0,3901	22,5	Alachlore ESA * Lot 5	0,3771	16,5	
Alachlore OA* Lot 2	0,4901	25,5	Alachlore OA* Lot 5	0,4720	23,5	
Métazachlore ESA* Lot 2	0,3399	18,0	Métazachlore ESA* Lot 5	0,3467	17,5	
Métazachlore OA* Lot 2	0,3151	23,0	Métazachlore OA* Lot 5	0,3145	28,0	
Métolachlore ESA* Lot 2	0,3904	17,5	Métolachlore ESA* Lot 5	0,3888	14,0	
Métolachlore OA * Lot 2	0,3618	24,5	Métolachlore OA * Lot 5	0,3658	22,5	

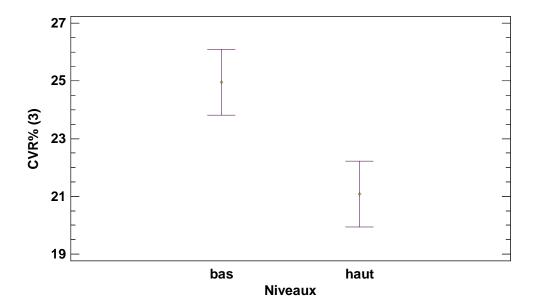
Pour le lot 3, les laboratoires ont rendus trop de résultats de type <LQ pour pouvoir calculer des valeurs de reproductibilité.

Nous pouvons constater que les CVR% se situent dans des ordres de grandeur raisonnables compte tenu des niveaux de concentration recherchés.

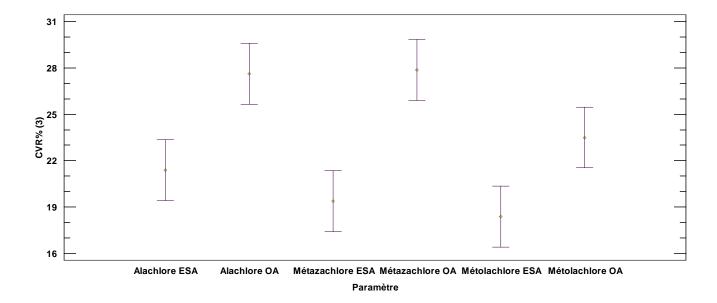

Une analyse de la variance a permis de montrer que la reproductibilité des résultats varie en fonction du paramètre, de la matrice et du niveau de concentration (voir tableau ci-dessous). En revanche les interactions entres ces facteurs ne sont pas significatives.

Analyse de variance pour CVR%

Source	Somme des carrés	Ddl	Carré moyen	F	Probabilité
EFFETS PRINCIPAUX					
A:Matrice	58,5937	1	58,5937	11,50	0,0194
B:Niveaux	90,0938	1	90,0938	17,69	0,0084
C:Paramètre	330,302	5	66,0604	12,97	0,0069
INTERACTIONS					
AB	15,8437	1	15,8437	3,11	0,1381
AC	45,7187	5	9,14375	1,80	0,2682
ВС	23,7187	5	4,74375	0,93	0,5302
RESIDU	25,4687	5	5,09375		
TOTAL (CORRIGE)	589,74	23			

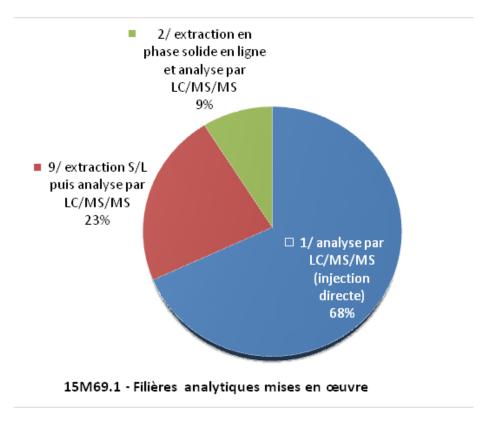

Les graphiques ci-dessous représentent les CVR moyens et leurs intervalles de confiance à 95% en fonction des facteurs étudiés.

La reproductibilité des résultats est plus mauvaise sur l'eau de rivière que sur l'eau d'Evian.



La reproductibilité des résultats est meilleure quand le niveau de concentration est plus élevé.

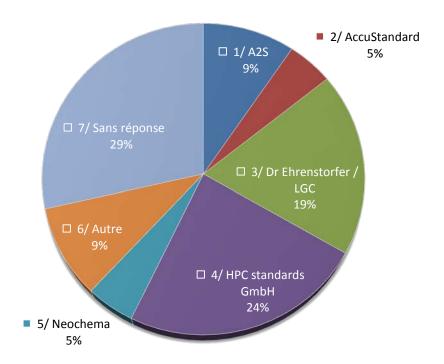
La reproductibilité des résultats des acides oxaliques (OA) est moins bonne que celles des acides sulfoniques (ESA).



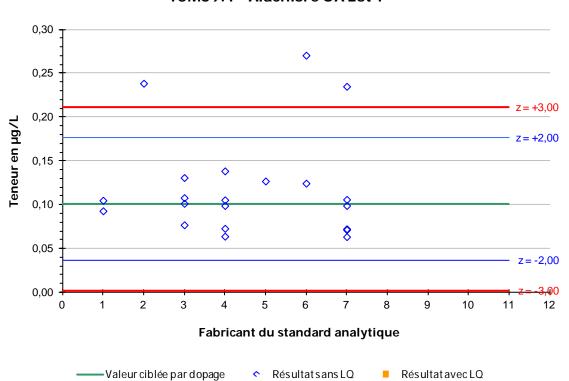
3.4 Méthodes analytiques mises en œuvre

Le traitement statistique des données toutes méthodes confondues n'a pas été perturbé par d'éventuels écarts entre méthodes. A noter que nous n'avons pas pu faire de comparaison faute d'un nombre de données suffisant pour chaque méthode d'analyse.

Pour information voici la répartition des techniques d'analyse utilisées pour cet essai.



3.5 Standards utilisés par les participants


L'examen de la répartition des résultats en fonction des standards utilisés n'a pas mis en évidence d'écart attribuable aux standards (étude effectuée sur le lot 1). Le nombre de résultats par fabricant/référence produit était cependant très réduit.

Exemple pour l'alachlore OA – lot 1 :

15M69.1 - Alachlore OA Lot 1 - Fabricant du standard

15M69.1 - Alachlore OA Lot 1

Fabricant	Nombre de résultats
1/ A2S	2
2/ AccuStandard	1
3/ Dr Ehrenstorfer / LGC	4
4/ HPC standards GmbH	5
5/ Neochema	1
6/ Autre	2
7/ Sans réponse	6

Note : les références des standards n'expliquent pas non plus la répartition des résultats au sein de chaque fabriquant.

4. PERFORMANCES DES LABORATOIRES

4.1 Z-score

Les z-scores obtenus pour chaque molécule par les 22 participants sont globalement satisfaisant :

Paramètre	Z-score Satisfaisant	Z-score Discutable	Z-score Non Satisfaisant
Alachlore OA Lot 1	18 (86%)	0 (0%)	3 (14%)
Alachlore ESA Lot 1	16 (80%)	2 (10%)	2 (10%)
Métazachlore OA Lot 1	20 (91%)	0 (0%)	2 (9%)
Métazachlore ESA Lot 1	21 (95%)	0 (0%)	1 (5%)
Métolachlore OA Lot 1	19 (86%)	0 (0%)	3 (14%)
Métolachlore ESA Lot 1	19 (86%)	0 (0%)	3 (14%)
Alachlore OA Lot 2	19 (90%)	0 (0%)	2 (10%)
Alachlore ESA Lot 2	19 (95%)	0 (0%)	1 (5%)
Métazachlore OA Lot 2	19 (86%)	1 (5%)	2 (9%)
Métazachlore ESA Lot 2	22 (100%)	0 (0%)	0 (0%)
Métolachlore OA Lot 2	20 (91%)	0 (0%)	2 (9%)
Métolachlore ESA Lot 2	18 (82%)	2 (9%)	2 (9%)
Eau de rivière	230 (89%)	5 (2%)	23 (9%)

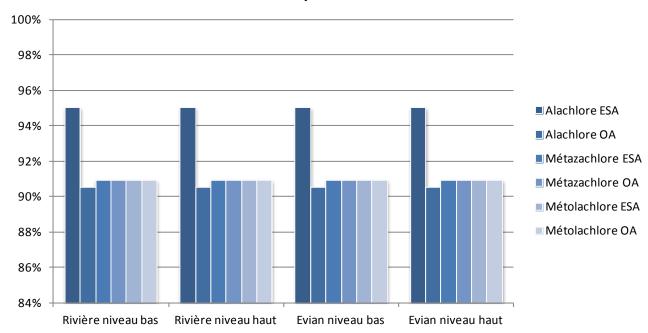
Paramètre	Z-score Satisfaisant	Z-score Discutable	Z-score Non Satisfaisant
Alachlore OA Lot 4	18 (86%)	0 (0%)	3 (14%)
Alachlore ESA Lot 4	18 (90%)	0 (0%)	2 (10%)
Métazachlore OA Lot 4	19 (86%)	2 (9%)	1 (5%)
Métazachlore ESA Lot 4	21 (95%)	0 (0%)	1 (5%)
Métolachlore OA Lot 4	16 (73%)	3 (14%)	3 (14%)
Métolachlore ESA Lot 4	18 (82%)	1 (5%)	3 (14%)
Alachlore OA Lot 5	19 (90%)	0 (0%)	2 (10%)
Alachlore ESA Lot 5	18 (90%)	1 (5%)	1 (5%)
Métazachlore OA Lot 5	19 (86%)	1 (5%)	2 (9%)
Métazachlore ESA Lot 5	22 (100%)	0 (0%)	0 (0%)
Métolachlore OA Lot 5	20 (91%)	0 (0%)	2 (9%)
Métolachlore ESA Lot 5	19 (86%)	1 (5%)	2 (9%)
Eau d'Evian	227 (88%)	9 (3%)	19 (7%)
Total	457 (89%)	14 (3%)	45 (9%)

Seul trois laboratoires présentent des anomalies récurrentes.

Pour le lot 3 (eau d'Evian non dopée), seule une évaluation qualitative des résultats a pu être effectuée en raison du nombre important de résultats de types < LQ rendus par les laboratoires. La valeur assignée pour ce lot a été estimée à <0,020µg/L pour tous les paramètres. Aucun laboratoire n'a eu son résultat évalué en non satisfaisant ou discutable (pas de faux positifs).

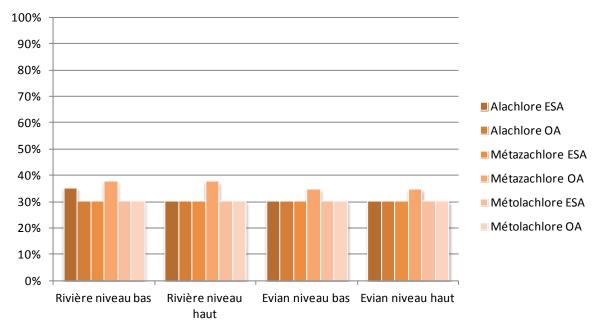
4.2 Zêta-score

Lors de cet essai nous avons proposé aux laboratoires qui le souhaitaient de nous indiquer l'incertitude de leurs analyses. L'objectif était de vérifier la fiabilité des estimations réalisées de l'incertitude de mesure.

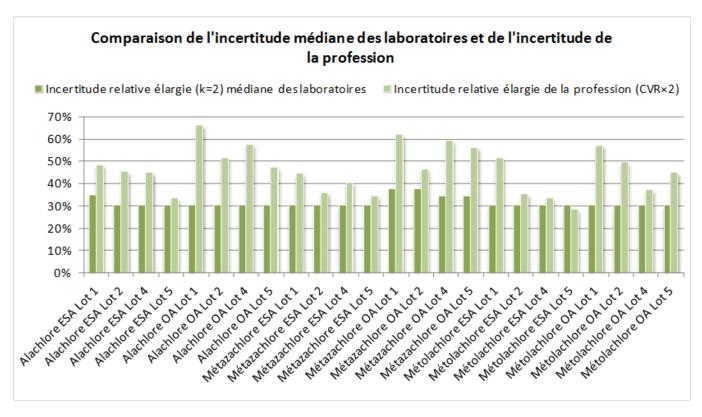

Avoir un bon zêta-score et un mauvais z-score indique que toutes les sources d'incertitude du processus analytique ont bien été identifiées et intégré dans les calculs. Mais cela n'enlève pas le fait que le résultat d'analyse est trop éloigné de la valeur assignée (relativement à la dispersion des résultats des participants). Cependant, le travail d'identification des sources d'erreur réalisé lors du calcul de l'incertitude de mesure doit pouvoir permettre d'identifier sur quelle partie de l'analyse les actions correctives doivent être menées.

Pour résumer, le zêta-score caractérise la qualité du bilan d'incertitude et la capacité avec ce bilan à recouvrir la valeur « vraie ». Le z-score caractérise la position du laboratoire par rapport aux performances des laboratoires participants.

Environ 90% des participants ont rendu des incertitudes :



% de laboratoires ayant rendu des incertitudes


L'incertitude affichée par les laboratoires est assez uniforme et voisine de 15% (en terme de CV%, k=1):

Incertitude relative élargie (k=2) médiane des laboratoires

L'incertitude médiane des laboratoires est cohérente avec l'incertitude de la profession.

CONCLUSION

En conclusion, cet EIL s'est bien déroulé, ne révélant pas de faux positif ou faux négatif.

Il a permis de montrer que:

- le dosage des 6 molécules concernées ne présente pas plus de difficultés que le dosage des pesticides ;
- les laboratoires maîtrisent bien l'ensemble du processus (fiabilité des analyses, estimation de l'incertitude).

Depuis ce premier essai concluant, cet essai a été pérennisé dans le réseau AGLAE. Deux nouveaux essais, l'un en 2016 (16M69.1) l'autre en 2017 (17M69.1) ont été mis en œuvre avec de nouvelles molécules : acétochlore ESA et OXA, diméthachlore OXA, diméthénamide ESA et OXA, flufénacet ESA et OXA.

Pour information, vous trouverez ci-dessous différentes données pour les essais 16M69.1 et 17M69.1 :

	Paramètre	Valeur assignée	Valeur ciblée par dopage	Valeur ciblée par dopage retrouvée ?	Valeur de reproductibilité (CVR %)	Valeur de répétabilité (CVr %)
	Acétochlore ESA	0,2743	0,331	OUI	36,5	3,0
	Acétochlore OXA	0,2529	0,2798	OUI	21,5	2,5
	Alachlore ESA	0,1671	0,1808	OUI	31,5	5,5
	Alachlore OXA	0,1608	0,2001	OUI	29	3,0
	Diméthachlore OXA	0,1379	0,15	OUI	37,5	6,5
9.1	Diméthénamide ESA	0,2903	0,3199	OUI	32,5	2,5
16M69.1	Diméthénamide OXA	0,2067	0,2498	OUI	57	2,0
16	Flufénacet ESA	0,2591	0,3127	OUI	38,5	6,0
	Flufénacet OXA	0,2643	0,3496	OUI	53,5	5,0
	Métazachlore ESA	0,2171	0,2604	OUI	28,5	5,5
	Métazachlore OXA	0,3172	0,3602	OUI	22	2,5
	Métolachlore ESA	0,1592	0,2019	NON	29	5,5
	Métolachlore OXA	0,1225	0,1401	OUI	26,5	4,5
	Acétochlore ESA	0,3785	0,4	OUI	14,5	4,0
	Acétochlore OXA	0,1965	0,1997	OUI	22	3,0
	Alachlore ESA	0,2554	0,2504	OUI	18	7,5
	Alachlore OXA	0,2753	0,2999	OUI	14,5	4,0
	Diméthachlore OXA	0,346	0,4404	OUI	38	2,0
9.1	Diméthénamide ESA	0,2878	0,3198	OUI	14	3,0
17M69.1	Diméthénamide OXA	0,3216	0,3496	OUI	22,5	3,5
17	Flufénacet ESA	0,3776	0,3897	OUI	18	2,0
	Flufénacet OXA	0,4633	0,4701	OUI	24,5	4,5
	Métazachlore ESA	0,2618	0,2803	OUI	24,5	4,0
	Métazachlore OXA	0,1843	0,2001	OUI	25	6,0
	Métolachlore ESA	0,22	0,2301	OUI	20,5	4,0
	Métolachlore OXA	0,1498	0,1796	OUI	23,5	5,5

Unité en μg/L